
Fundamental Data Types, Constants
Console Input, Text Formatting,

Decision Statements and Expressions

 Basic Types and Casts
 Big Integers
 Constants
 Strings and Conversions
 Understanding Error Messages
 String Input and Output

• Check out FundamentalDataTypes from SVN
• Also check out TypesAndDecisions from SVN

Table from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

 Consider:
 int i, j;
 double d, e;
 i = 10;
 d = 20.1;
 e = i; // OK
 j = d; // ERROR!

 Why the difference?
◦ Assigning a double to an int can result in information

loss (the fractional part)
 Add a cast to tell Java that we understand there could

be a problem here:
 j = (int) d; // OK

 But what happens to the fractional part of d?
◦ It is truncated (lost) Q1-Q2

 Look at RoundAndRound.java
◦ What does it do?

 Run it and try some different numbers, like:
◦ 1.004
◦ 1.005
◦ 1.006
◦ -1.006
◦ 4.35

 Zoinks! What’s up with these, especially the
last one?
◦ Try changing the %f format specifier to %24.20f

Q3

 BigInteger for arbitrary size integer data
 BigDecimal for arbitrary precision floating

point data

 We plan to revisit BigInteger later in the
course

 Constants let us avoid Magic Numbers
◦ Hardcoded values within more complex expressions

 Why bother?
 Code becomes more readable, easier to change,

and less error-prone!
 Example:

final double relativeEyeOutset = 0.2;
final double relativeEyeSize = 0.28;
final double faceRadius = this.diameter / 2.0;
final double faceCenterX = this.x + faceRadius;
final double eyeDiameter = relativeEyeSize * this.diameter;
…

final tells Java to stop us from
changing a value (and also gives a
“hint” to the compiler that lets it
generate more efficient code)

Q4 – Q5

 We’ve also seen constant fields in classes:
◦ public static final int FRAME_WIDTH = 800;

 Why put constants in the class instead of a
method?
1. So they can be used by other classes
2. So they can be used by multiple methods
3. So they are easier to find and change

Q6

 Already looked at some String methods
 Can also use + for string concatenation
 Quiz question:
◦ Look at StringFoo.java
◦ Based on the four uses of + in main(), can you

figure out how Java decides whether to do string
concatenation or numeric addition?
◦ Decide what the 3 commented-out uses of + in
main() will print, then uncomment them and see if
you were right.
 Do you see why they work as they do?

Q7

 You can convert strings to numbers:
◦ double Double.parseDouble(String n)
◦ int Integer.parseInt (String n)

 Can also convert numbers to strings:
◦ String Double.toString(double d)
◦ String Integer.toString(int i)

 Or maybe easier:
◦ “” + d
◦ “” + i

 Go back to StringFoo.java
 Uncomment the last line of main():
◦ StringFoo.helper();

 Run it
 What happened?

The first line will usually give you
a hint about what went wrong.

The first line of your
code listed will give
you a clue where to

look. The error output often appears at the top of the
Console window (even though the error
occurred after the output that is displayed). This
is because the normal output and the error
output are written concurrently to two different
places, but Eclipse shows them together. Q8 – Q10

 In Python:
◦ "This is a string"
◦ 'and so is this'

 In Java:
◦ "This is a string"
◦ This is a character: 'R'
◦ So is this: '\n'
◦ 'This is an error'
◦ 'a' and "a" are fundamentally different in Java

 Can use charAt(index)
 Example:
String message = "Rose-Hulman";
for (int i=0; i < message.length(); i++) {
 System.out.println(message.charAt(i));
}

 charAt() returns a 16-bit char value
 Exercise: Work on TODO items in

StringsAndChars.java When done, read next
slide and do that exercise also.

 Creating a Scanner object:
◦ Scanner inputScanner =
 new Scanner(System.in);

 Defines methods to read from keyboard:
◦ inputScanner.nextInt()
◦ inputScanner.nextDouble()
◦ inputScanner.nextLine()
◦ inputScanner.next()

 Exercise: Look at ScannerExample.java
◦ Add print’s to the code to prompt the user for the

values to be entered

Tables from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

More options than in C.
We used a couple in
recent examples.
Can you find them?

Q9 – Q10

 Printing:
◦ System.out.printf("%5.2f%n", Math.PI);

 Formatting strings:
◦ String message =
 String.format("%5.2f%n", Math.PI);

 Display dialog box messages
◦ JOptionPane.showMessageDialog(null, message);

int letterCount = 0;
int upperCaseCount = 0;
String switchedCase = "";

for (int i = 0; i < message.length(); i++) {
 char nextChar = message.charAt(i);

 if (Character.isLetter(nextChar)) {
 letterCount++;
 }

 if (Character.isUpperCase(nextChar)) {
 upperCaseCount++;
 switchedCase += Character.toLowerCase(nextChar);
 } else if (Character.isLowerCase(nextChar)){
 switchedCase += Character.toUpperCase(nextChar);
 } else {
 switchedCase += nextChar;
 }
}

Q11

 Exercise: EmailValidator
◦ Use a Scanner object
◦ Prompt for user’s email address
◦ Prompt for it again
◦ Compare the two entries and report whether or not

they match

 Notice anything strange?

 In Java:
◦ o1 == o2 compares values
 It evaluates to true only if their bits are the same
 So for variables of class type, which store references, they are ==

only if they refer to the same object (same place in memory)
◦ There is an equals method defined in the Object class,

that all objects inherit.
 It behaves the same as == does.
 But subclasses can, and often do, override the equals method

to give their own semantics to “equality”, using their internal
state (their fields). For example:
 For Strings: s1.equals(s2) iff their characters are all ==.
 new Integer("0").equals(new Integer("-0"))

Q12 – Q13 How should you compare the email
addresses in the exercise?

The equals method is
intended to dig inside

objects and compare their
data in a “sensible” way.

◦ if (amount <= balance) {
 balance -= amount;
} else {
 balance -= OVERDRAFT_FEE;
}

◦ if (totalSpent >= 100) {
 discount = 0.15;
} else {
 discount = 0.0;
}

 Let us choose between two possible values for
an expression

 For example,
◦ balance -= (amount <= balance ? amount : OVERDRAFT_FEE);

 is equivalent to:
 if (amount <= balance) {

 balance -= amount;
} else {
 balance -= OVERDRAFT_FEE;
}

 Also called ternary or selection operator (Why?)

Q14

 Comparison operators: <, <=, >, >=, !=, ==

 Comparing objects: equals(), compareTo()

 Boolean operators:

◦ and: &&

◦ or: ||

◦ not: !

Q15

 A common pattern in Java:
public boolean isFoo() {
 … // return true or false depending on
 // the Foo-ness of this object
}

Q16

 Black box testing: testing without regard to
internal structure of program
◦ For example, user testing

 White box testing: writing tests based on
knowledge of how code is implemented
◦ For example, unit testing

 Test coverage: the percentage of the source
code executed by all the tests taken together
◦ Want high test coverage
◦ Low test coverage can happen when we miss

branches of switch or if statements

Q17

The next five slides on switch
and enumerations are
optional. Do the Bid exercise
if you’re interested. See the
book or Google for more info.
on switch and enum.

char grade = …
int points;
switch (grade) {
case 'A':
 points = 95;
 break;
case 'B':
 points = 85;
 break;
…
default:
 points = 0;
}

Can switch on
integer, character,

or “enumerated
constant”

Don’t forget the
breaks!

 Specify named sets:
public enum Suit {
 CLUBS, SPADES, DIAMONDS, HEARTS
}

 Store values from set:
Card c = new Card(2, CLUBS);’

 Then switch on them:
switch (this.suit) {
 case CLUBS:
 case SPADES:
 return "black";
 default:
 return "red";
}

Why no break
here?

Why no break
here?

 Implement a class Bid
◦ Constructor should take a “trump” Suit and an

integer representing a number of “tricks”
◦ Test and implement a method, getValue(), that

returns the point value of the bid, or 0 if the bid
isn’t legal. See table for values of the legal bids.

Spades Clubs Diamonds Hearts No Trump
6 tricks 40 60 80 100 120
7 tricks 140 160 180 200 220
8 tricks 240 260 280 300 320
9 tricks 340 360 380 400 420
10 tricks 440 460 480 500 520

switch (bidSuit) {
 case CLUBS:
 case SPADES:
 return "black";
 default:
 return "red";
}

Suit enum is provided in the repository!

http://en.wikipedia.org/wiki/500_(card_game)
http://en.wikipedia.org/wiki/500_(card_game)

 Live-coding:
◦ Test and implement isValid() method for Bid
 JUnit has test methods assertTrue() and
assertFalse() that will be handy

◦ Change getValue(): return 0 if isValid() is false

 Study your code for Bid and BidTests
 Do you have 100% test coverage of the

methods?
◦ getValue()
◦ isValid()

 Add tests until you have 100% test coverage

 The project assigned on Wednesday is a pair
programming assignment. You MUST find
one partner.
◦ If you can’t find one, we can pair you with someone

on Wednesday.
◦ Only two people per group

Faces HW Work Time and HW4

Check out Faces from SVN if you haven’t already. Q18 – Q19

	CSSE 220 Day 4
	Questions?
	Data Type Smorgasbord
	Basic Types (again)
	Conversions and Casts
	Example
	When Nine Quintillion Isn’t Enough
	Constants in Methods
	Constants in Classes
	Strings in Java
	Converting Strings to Numbers
	Conversions Gone Awry
	Reading Exception Stack Traces
	char Type in Java is Like C’s
	Iterating Over Strings in Java
	Reading Console Input with java.util.Scanner
	Formatting with�printf and format
	Formatting with�printf and format
	If Statements in a Nutshell
	Comparing Objects
	Comparing Objects
	If-else statements that choose a value for a variable are common
	Conditional Operator
	Boolean Essentials—Like C
	Predicate Methods
	Test Coverage
	Switch and Enum
	Switch Statements: Choosing Between Several Alternatives
	Enumerated Constants
	Optional Exercise: Bids for �the Card Game “500”
	Optional: Predicate Methods
	Optional Exercise
	For Wednesday…
	Making Faces

